SNO 4063K/KM

MONITORING OF EMERGENCY STOP, SAFETY GATES AND LIGHT BARRIERS

FUNCTION

SNO 4063K

The device is a two-channel switching device for emergency stop applications with self-monitoring on each ON-OFF cycle. It complies with EN 60204-1 and is equipped with forcibly guided relays.
After supply voltage has been applied to the A1/A2 terminals and the safety inputs have been closed, pressing the reset button closes the enabling current paths (manual start). When the safety inputs are opened/de-energized the enabling current paths will open.

- Manual start When the safety inputs are closed, a button is used to open reset input S34 (triggering with falling edge) or to close reset input S35 (triggering with rising edge).
- Automatic start Reset input S35 is connected to S33. The device starts with the rising edge of the signal on safety input S12.

APPLICATIONS

- Protection of people and machinery
- Monitoring of emergency stop applications
- Monitoring of safety gates
- Monitoring of light barriers
- Up to PL e / Category 4 (EN ISO 13849-1)
- Up to SIL cl 3 (EN 62061)

FEATURES

- Stop Category 0 according to EN 60204-1
- Manual or automatic start
- Cross monitoring
- Single-channel or two-channel control
- 3 enabling current paths

SNO 4063KM

The function of this device corresponds to that of the SNO 4063K. The device is suitable for connecting to light curtains for Type 4 (EN 61496-1) and to short-circuit forming 4-wire safety mats, switching strips or switching edges (without monitoring resistance).

- Safety mats The device must be operated with two channels and cross monitoring. If there is resistance $<50 \Omega /$ channel and a short circuit between the channels (S11/S12 and S21/S22) the enabling paths open and the SUPPLY LEDs flash.
- Light curtain for Type 4 (EN 61496-1) The device will be operated with two channels and without cross monitoring, if the light curtain connected to the OSSD detects a shunt fault on its own.

For applications with tactile operating modes (rapid ON-OFF cycles, for example at manual supply) we recommend the use of SNO 4063KM

CIRCUIT DIAGRAM

SNO 4063K/KM
24 V AC/DC

115-120 V AC / 230 V AC

OVERVIEW OF DEVICES | PART NUMBERS

Type	Rated voltage	Terminals	Part no.	P.U.
SNO 4063K-A	12 VDC	Screw terminals, pluggable	R1.188.1120.0	1
	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.0990.0	1
	115-120 V AC	Screw terminals, pluggable	R1.188.1000.0	1
	230 V AC	Screw terminals, pluggable	R1.188.1010.0	1
SNO 4063K-C	$24 \mathrm{VAC} / \mathrm{DC}$	Push-in terminals, pluggable	R1.188.2450.0	1
SNO 4063KM-A	$24 \mathrm{VAC} / \mathrm{DC}$	Screw terminals, pluggable	R1.188.1280.0	1

TECHNICAL DATA

Function		Emergency stop relay
Function display		3 LEDs, green
Power supply circuit		
Rated voltage U_{N}	A1, A2	$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}, 115-120 \mathrm{VAC}, 230 \mathrm{VAC}$
Rated consumption	24 V DC (K / KM)	2.0 W / 2.1 W
	115-120 V AC, 230 VAC	2.4 W/4.4 VA
Rated frequency		$50-60 \mathrm{~Hz}$
Operating voltage range U_{B}		0.85-1.1 $\times \mathrm{U}_{\mathrm{N}}$
Electrical isolation supply circuit - control	circuit	yes (at $\mathrm{U}_{\mathrm{N}}=115-230 \mathrm{VAC}, 230 \mathrm{VAC}$)
Control circuit		
Rated output voltage	S11/S21	22 VDC
Input current / peak current	S12/S33, S31/S22	$40 \mathrm{~mA} / 100 \mathrm{~mA}$
	S34, S35	$5 \mathrm{~mA} / 50 \mathrm{~mA}$
Response time $\mathrm{t}_{\text {A1 }} / \mathrm{t}_{\mathrm{A} 2}$		$40 \mathrm{~ms} / 600 \mathrm{~ms}$
Minimum ON time t_{M}		50 ms
Recovery time $\mathrm{t}_{\text {w }}$		100 ms
Release time t_{R}		$<25 \mathrm{~ms}$
Synchronous timets		$200 \mathrm{~ms}(\mathrm{CH} 1 \rightarrow \mathrm{CH} 2)$
Permissable test pulse time top		$<1 \mathrm{~ms}$
Max. resistivity, per channel ${ }^{\text {1) }}$	$24 \mathrm{VAC} / \mathrm{DC}$	$\leq\left(5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 100\right) \Omega$
	115-120 V AC, 230 V AC	$\leq\left(5+\left(1.176 \times U_{B} / U_{N}-1\right) \times 100\right) \Omega$
Output circuit		
Enabling paths	13/14, 23/24, 33/34	normally open contact
Contact assignment		forcebly guided
Contact type		Ag-alloy, gold-plated
Rated switching voltage	enabling path	230 V AC
Max. thermal current $l_{\text {th }}$	enabling path	6 A
Max. total current I^{2} of all current path	($\mathrm{Tu}=55^{\circ} \mathrm{C}$)	$9 A^{2}$
Application category (NO)	AC-15	$\mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}, 1 \mathrm{l} 3 \mathrm{~A}$
	DC-13	$\mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}, \mathrm{l}$ e 2.5 A
Short-circuit protection (NO), lead fuse / circuit breaker		6 A class gG / melting integral < $100 \mathrm{~A}^{2} \mathrm{~s}$
Mechanical life		10^{7} switching cycles
General data		
Creepage distances and clearances between the circuits		EN 60664-1
Protection degree according to EN 60529 (housing / terminals)		IP40 / IP20
Ambient temperature / storage temperature		$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C} /-25^{\circ} \mathrm{C}-+75^{\circ} \mathrm{C}$
Wire ranges screw terminals,	fine-stranded / solid	$1 \times 0.2 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.2 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
	fine-stranded with ferrules	$1 \times 0.25 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} / 2 \times 0.25 \mathrm{~mm}^{2}-1.0 \mathrm{~mm}^{2}$
Permissible torque		$0.5-0.6 \mathrm{Nm}$
Wire ranges push-in terminals		$1 \times 0.25 \mathrm{~mm}^{2}-1-5 \mathrm{~mm}^{2}$
Weight	24 V AC/DC device / AC device	$0-21 \mathrm{~kg} / 0-25 \mathrm{~kg}$
Standards		EN ISO 13849-1, EN 62061
Approvals		DGUV, cULus, CCC
${ }^{1)}$ If two-channel devices are installed as	ingle channel, the value is halve	

